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Abstract: a-Hydroperoxyisochan derivatives 5 react with formaldehyde under 
acidic conditions to produce mixhues of bicyclic 1.2,4,6-t~r0xepa~1~ 9 and 1,2,4,6,8- 
pentoxonane 10 derivativea The structure of the compound 1Oa was unambiguously 
established by the X-ray analysis. With acetaldehyde, only the corresponding 
1,2,4,6-reiroapanes 9 were obtained. 

The chemistry of mono- and polycyclic peroxides has attracted considerable attention since a 

significant number of peroxidic natural products with interesting pmperties have ken isolated.t*2 Reactions 

between formaldehyde O-oxide and l,%eto-aldehydes have recently ken reported to produce, via stepwise 

[3 + 2 + 21 cycloaddition processes, polycyclic adducts 1 which contain the comparatively rare 1,2,4,4- 

tetroxepane ring system (Scheme l)? Moreover. acid-catslysed rearrangement of keto-ozouides 2, derived 

from intermolecular [3 + 21 cycloaddition reactions between formaldehyde O-oxide and keto-aklehydes, were 

also found to yield 1,2,4,6-tetroxepane derivatives. 

Scheme 1 

CHpCF3 

In the pursuit of alternative synthetic approaches to 1,2,4,6-tetroxepanes 1, acid-catalyzed cyclization 

reactions between a-alkoxy a’-hydroperoxy derivatives of cyclic ethers 3 and formaldehyde were 

investigated (Scheme 1),4 Thus, ueatment of l-&?rf-butylindene 40 (2 mmo1) with ozone (1 equiv) in 

uifluoroethanol-ntethylene chloride (I5 ml; 15, v/v) at 0 “e, followed by column chromatography of the 

crude reaction mixture on silica gel (eking initially with benzene followed by diethyl ether-benzene 2;98) 

afforded the desired solvent-derived product 5a5 (55% yield) together with its regioisomer 6a6 (31% yield) 

(Scheme 2). Similarly, isochroman derivatives, Sb (22%) and SC (23%) were obtained from the 
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oorreqonding indenes 4b,e Unlike other more highly substituted indene derivatives, ozonization of the l- 

alkyEmient% 4 in methanol Idid not afford readily isolable methoxy isoebromans analogous to 5 and 6.7 

03 
~ CF&HzOWCH&l2 

4 5 6 

Y30H 
+ 

-0CH2CF3 

Scheme 2 a;lR = %I b;R=isopropyl c; R = 3-pentyl 

of hydroperoMe 5a with formaldehyde unexpectedly yielded two crystallk 

peroxidic products in rou equal proportions.~ 

The fust product isolated readily identifmd as 

the 1,2,4,6-tetroxepane 

crystallographic analys 

unambiguously shown t a novel 1,2,4.6,8- 

pentoxonane derivative as strated in Figure 1 

and structural formula (Scheme 3)P Under 

similar conditions, of hydroperoxides 5b 

and SE with formalde e also gave rise to 

mixtures of the co 

pentaoxonanes [9b (32 

and 9c (11%) and 1Oc 

formaldehyde was re 

hydroperoxides 51-c the corresponding 

tetroxepanes W-f respec as the sole isolable 

peroxidic products in g (#70%).11 Analogous reactions between the isomerk hydroperoxide 6 and 

formaldehyde did not cycloadducts hecause extensive heterolytic cleavage of the peroxidic C-0 

bond appeared to he 

The formation of bicyclic peroxides 9 and 10 can be rationaked by tbe sequence outlined in 

Scheme 3. Protonation of key intermediate hemiperacetal7, resulting from the acid catalysed adclition of 

5 to the appropriate followed by loss of trifluomethanol to give a stabilised carhecation aad 

subsequent intramolecular cyclisation via the hydroxy group would produce 9. Given the propensity of 

formaldehyde to oligome * 

4 

,12 it is not surprising that the addition of second molecule of formaldehyde to 7 

to give 8, a likely precurso of 10, could compete effectively under the prevalent acidic conditions with tie 

afotemntioned pathway to ip . 

as being disfavoured for carbocycl.ic systems, cycliition reactions producing 9- 

formation of hexoxonanes from the 

peroxidation of ketones.l3 may be attributed to a comparative reduction in destabiiing factors such as 
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a; R=lBu 

b;R=isapropyl,R’=He;R=Isopropyl,R’=Me b;R=isopropyl 

Scheme 8 c;R=3qntyl,R’=H ~R=&pentyl,R’=Me c; R = Bpentyl 
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All new compounds gave satisfactory elemerdal analyses. 

Hydroperoxide Sa: oil; ‘H NMR (400 MHz, CDCl3) 60.97 (s, 9 H), 2.62 (s, t H), 4.26 -4.47 {m, 2H). 

5.75 (s, 2 H), 7.0-7.5 (m. 4H). 8.55 (s. 1 i-I); 1% NMR (CDCl3) 6 28.11,34.41,48.65,65.M (q. I= 34 

Hz). 95.88,99.74, 123.95 (q. I= 279 Hz), 126.45, 127.14, 128.21, 130.50, 131.80. 131.86; JR 3600- 
3200,1280,1140,1090,750cm-1. 

Hydroperoxide 6a: mp 133-134 ‘C (from benzene); 1H NMR (400 h&k, CM&) SO.96 (s, 9 H). 2.71 

(s, 1 H), 3.95-4.20 Im. 2H), 5.49 is. 1 H), 6.10 (s, 1 H). 7.1-7.5 (m, 4 H). 8.66 (s, 1 H); 13C NMR 
(CDc13) 6 28.12, 33.98, 51.33, 64.07 {q, J = 34 Hz), 97.30.99.13, 124.21 (q, J = 279 Hz), 126.57, 

127.00,128.50,128.93,131.29,133.00; lR3600-3200,1280,1160,1090,755 cm-l. 

The molecular sa~~ture of 6a has been established by X-ray crystallographic analysis. 

Sugimoto, T.; Teshiima, K.; Nakamura, N.; Nojima, M.; Kusabayashi, S.; h#cCullough, K. J_ 3. Org. 
cht???L ,1993,58,135. 
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8. kx~th Of hyhprkde Sa with formaldehyde (representative procedure): To a solution of 5a (675 

mg, 2.11 mmol) afid formaldehyde (0.843 g of 37 wt % aqueous SoluEion ) in CH$12 (10 ml), was 

added anhyd. sodisl sulfate (500 mg) and the mixture was stirred at 0 “C for 2 h, Then, a solution of 

trNuoroacetic acid (241 mg, 2.11 mmol) in CH$IIz (10 ml) WBS added and the reaction was continued 

at room tempera& for 2 h. After a conventional work-up, the crude product mixture was separated 

by column chroma graphy on silica gel (elution with ether-hexane; the ratio WBS changed from 595 

to 15~85) to give xcpane 

@! 

9a ( 16s mg, 3 1% yield) and penWonanelOa (160 mg, 27% yield}. 

Tettoxepane 9a: m 48-50 Oc; 1H NMR (200 MHz, CC4) S 1.03 (a, 9 H), 2.41 (s, 1 A), 4.76 (da, J = 

10 Hz, 1 HA 5.06 ( , J = IO Hz, 1 HA 5.89 Is, 1 X-l), 6.12 (s, 1 H), 7.1-7.6 (m, 4 Hj; % NMR (CJXl3) 

6 28.57,34.29,48. ,94.56,95.28, 100.87, 125.87, 126.79, 128.10, 130.91, 131.45, 134.97. 

Peotoxonane llh dp 105 “c; ‘H NMR (ZOO MHz, CC&) 6 0.97 (s. 9 A), 2.55 (s, 1 H), 4.79 (d, J = 6 

Hz. 1 HI, 5.02 (9. 4 H). 5.18 (d, J = 6 Hz. 1 H), 5.72 (s. 1 H), 5.98 (s, 1 H), 7.12-7.43 (m, 4 H); 

molecufar weight ( par presre osmometer; CHzCW 278: MASS (CI; isobuuiae) 281 (M+ + 1). 

9. Gystal &@ofor 2 C&Hl&, M = 280.3, colourless prisms, moncAinic, space group P21/n (non- 

sumlard setting of o. 14), o 6.3115 (14), fi 30.689 (91, c 7.536 (3) & U 1453.0 (8) A31 2 = 4, DC 

1.281 g cm-3, 

1 

F( aOa p(Mo-Ka) 0.90 cm-l* The intensity data were collectad on an Enmf-Noniua 

CAD4 di!bctome (20 range: 1 .O - 50.0 O; Q) - Ze scmming; MO-KU X-radiation). Final discn~pancy 

factors R and RW + 0.058 and 0.077 respectively for 1753 intensities with I > W(I). 

10. Tetroxcpane 9b: rnd 47-48 “c (from hezane); IH NMR (ZOO MHz, CC4) S 0.96 (d, J = 7 Hz, 3 K-l), 

= 9.5 Hz, 1 H), 5.7 I? (s, 1 H). 6.07 (s, 1 H). 7.1-7.5 (m, 4 H); 13C PJMR (CDc13) 6 19.98, 20.72, 

1.06(d.J=7Hz,3 , 1.8-2.3 (m. 1 H), 2.48 (d, I = 6 Hz, 1 H), 4.87 (d, _l= 9.5 Hz, 1 H), 5.11 (d, J 

31.46,45.48,94.60, 5.46, 101.14, 125.96,126.65.128.55.129.62, 130.80, 136.13. 

Pentc~xonane lob: o’, ! ; %I Nh4R (200 MHz, CCl4) 8 0.86 (d. I = 7 Hs 3 H), 1.02 (d, J = 7 Hx. 3 H), 

1.7-2.2 (m, 1 H), 2. 1 (d, J = 5.5 Hz, 1 H), 4.90 (d, J = 6.5 Hz, 1 H), 5.09 (s, 2 H), 5.1s (d, J = 65 

Hz, 1 H), 5.51 (s, 1 i ,5.91 Q 1 H), 7.1-7.4 (m, 4 H); MASS (CI; isbutane) 267 (M+ + 1)s 

Tetmxepane k: oil; 1H NMR (200 MHz. CC4) 6 0.6-1.7 (m. 11 H). 2.74 (d, J = 3.5 Hz, 1 HI, 4.85 

(d, J = 9 Hz, 1 H), 5. 8 (d, J= 9 Hz, 1 H), 5.58 (s, 1 H), 6.02 (s. 1 IQ, 7.2-7.6 (tn. 4 H). 

Pentoxonane 10~: m 113 “c (from ether-hexane); 1H NMR (200 MHz, CDC13) 6 0.6-1.8 (m. 11 H), 

2.84 (d. .I = 2 Hz, 1 p), 4.88 (d, /= 7 Hz, 1 H), 5.07 (s, 2 H), 5.14 (d, .I= 7 Hz, 1 H). 5.39 (s, I H), 

5.85 (s, 1 H), 7.1-7.5 (m, 4 H). 

11. Tetroxepane 9d: 1H ,“” (200 MHZ, CC4) 6 1.03 (s, 9 II), 1.21 (d. J = 5 Hz. 3 H), 2.38 (s. 1 H), 

4.97 (q.J=5Hz, 1 (5.83 (s, 1 H), 5.99 (s, 1 H), 7.2-7.5 (m, 4 H). 

Tetroxepane 9e: oil; 1H NMR (200 MHz, CC4) 6 1.01 (d, J = 6 HZ. 6 H), 1.24 (d. J = 5 HZ, 3 H), 

1.8-2.2 (m, 1 H), 2.4 (d, J= 6 Hz, 1 H), 5.04 (q, I= 5 Hz, 1 H), 5.68 (s, 1 H), 5.98 (s, 1 H), 7.1-7_5 

(m, 4 H); 1% NMR 1 (CDCl3) S 17.42, 20.14, 20.75, 31.34, 45.58,93.87, 101.25, 101.55. 125.93, 

126.62,128.28. 128. 7, 129.72, 131.51. 

Tetroxepane 91: mp 9-70 “C (from ether-hexane); IH NMR (XI0 MHz, CCL) 6 O-7-1.7 (m. 14 H). 

2.70 (d. J = 3.5 Hz, 5.45 (q, J= 5 Hz, 1 H), 5.61 (s, 1 H), 5.97 (s, 1 H), 7.1-7.5 (m, 4 H). 
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